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J.  Phys.: Condens. Matter 2 (1990) 4567-4578. Printed in the UK 

Quantum oscillations of static displacements and of 
point-defect elastic interaction in metals 

D A Vu1 
Institute of Metal Physics, Academy of Sciences of the Ukraine, 252680, Kiev-142, USSR 

Received 5 July 1989 

Abstract. It is shown that the static displacement fields around point defects and the elastic 
interaction energy between defects in metals at distances exceeding the interatomic spacing 
have an oscillating quantum component (ac), besides the smoothly varying component 
obtained in the elastic continuum theory. This QC decreases as R-'I cos(2pFR + cp) in direc- 
tions normal to the Fermi surface (FS), where 2pF is the FS diameter and n = 1 ,  2 and 3 for 
flat, cylindrical and spherical FS sections. respectively. The QC has its origin in long-range 
interatomic interactions of similar form, both impurity-host and host-host. It is pointed out 
that the existence of QC in the atomic displacements should produce anomalies in diffuse 
x-ray and neutron scattering from metallic solid solutions. 

1. Introduction 

Point defects in a crystal induce the static displacements u(R) of host atoms. Elastic 
fields, caused by defects, interfere. This leads to the point-defect elastic interaction with 
energy % ( R ) .  

Within the continuum elastic theory [l, 21, we have displacements uC0"'(R) cz R-2 
and %const(R) R-3 (for the elastic anisotropic crystal). It is usually assumed that the 
continuum approximation for u(R) and %(R)  is correct at distances exceeding the inter- 
atomic separation R + a (a is the lattice spacing) and is caused by the singularities of the 
Fourier transforms u(q) and %(q) at q + 0 (see e.g. [2]). Strictly speaking, to turn to the 
continuum theory, R is to exceed the range of the interatomic forces. 

In metals, the interatomic host-host and impurity-host interactions due to con- 
duction electron screening are long-range. Along the directions R ,  normal to the Fermi 
surface (FS), they decrease according to a power law and have Friedel oscillations [3,4] 

R-" cos(2pFR + 9) (1.1) 

where 2pF is the FS diameter, h = 1 and n = 1, 2 and 3 for flat, cylindrical and spherical 
FS sections. Therefore one can expect that the asymptotic form of u(R) and %(R)  in 
metals will differ from the continuum approximation. 

It will be shown in this work that in metals the expressions for u(R) and %(R)  at large 
distances R S a contain, besides the usual continuum components (cc), oscillating 
terms like (l.l), which we call quantum components (ac) and denote uE(R) and sE(R)  
indicating their electron origin. 
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Mathematically the presence of QC is due to the fact that u(q) and %(q) have singu- 
larities at q = qF = 2kF - Go, besides the long-wave singularities (here 2kF is the vector 
connecting the ‘parallel’ parts of FS, and Go is a reciprocal lattice vector reducing 2kF to 
the first Brillouin zone). Their existence is caused by the singularities at q = qF of the 
electron contributions to the dynamic matrix V(q) of the ideal crystal and the Fourier 
transform W ( q )  of the defect-lattice force. 

It is well known that the singularities in V(q) at q = qF cause the Migdal-Kohn 
anomalies in the phonon spectrum of metals [5-71. The quantum oscillations u(R) 
predicted in this work are the static analogue of these singularities (and the singularities 
of W ( q )  as well). 

Previously [8], the oscillating character of the asymptote of %(R)  was pointed out for 
the simple case of atoms embedded into a free-electron gas. 

To calculate QC, uE(R) and s E ( R ) ,  we use the lattice static method (or Kanzaki 
method) [2,9]. The main formulae are briefly presented in section 2. In section 3 the 
electronic energy of the distorted metal, containing arbitrary point defects, is calculated 
in second-order perturbation theory. This makes it posible to find the electron con- 
tributions to W ( q )  and V(q).  Such an approach within the scope of pseudopotential 
theory was frequently used for the description of different point defects in metals (see 
e.g. [10-14]). In this paper the generalisation of this approach was developed, taking 
into account the local field effects for arbitrary electron energy band structure and FS. 
These effects were analysed earlier when studying phonons in pure metals [15, 161. 

The peculiar (or singular) parts of W ( q )  and V(q),  and connected with them u(q) and 
%(q),  are derived and general expressions for uE(R) and gE(R) are obtained in section 
4. Specific calculations of QC for spherical, cylindrical and flat FS are carried out in section 
5 ,  and the analysis of the total atomic displacements and point-defect interaction energy 
in metals is done in section 6 .  

Finally, in section 7 the limitation of the model used and some physical consequences 
of quantum oscillations of u(R) and %(R)  are discussed. It is pointed out that QC of the 
atomic displacement fields should produce anomalies in diffuse x-ray and neutron 
scattering at diffraction vectors Q = qF + G .  

2. Lattice static method 

We consider a metal with Bravais lattice, into which point defects of one kind with 
concentration c are introduced. Let us indicate the site position of the ideal ‘average’ 
lattice (i.e. uniformly deformed at random defect distribution) as R, (s = 1, 2, , . . , N )  
and their displacements U,. Possible defect positions in the undeformed crystal are given 
by the vectors L, = R, + h ,  and their occupation numbers c, = 1, 0 when unit cell s is 
occupied by the defect or not. 

In the lattice static method [2] in harmonic approximation the displacements of the 
host atoms are taken into account and the change of the defect positions is neglected. 
The last is justified at small c and when the positions of the defects are the centres of 
symmetry in a crystal. Then the expansion of free energy in a power series of U, can be 
written as 

F =  Fo - E [W,(s, s’)(c,, - c)u,, - W,, (s ,  s’>us,us,]. (2.1) 
s,s’ 

Here W(s, s’) = W(R, - L,,)  is the force acting on the atoms from the defect located in 
the s’  cell, and V,,(s, s’) is the force constant matrix. 
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We introduce the Fourier components 

v U ( q )  = 2 v i j ( s ,  s f >  exp[-iq * ( R ,  - R,,)]  
S 

where vector q belongs to the first Brillouin zone. The function W(q) is a real and 
antisymmetric function of q because the forces W(s, S I )  are central. If the origin is chosen 
in the lattice cell, the functions u(q),  V(q), c(q) exp(iq h) and W ( q )  exp(-iq - h) will 
have translational symmetry in reciprocal space with period equal to the reciprocal 
lattice vector G .  In q-representation 

After minimisation of F with respect to ui(q) one can find the connection between 
the displacements and concentration waves 

= A(q)c(q) A ( q )  = V-l(q)W(q). (2.4) 
Substitution of (2.4) into (2.3) gives the equilibrium free energy of the solid solution 

% ( 4 )  = -w(q)v-'(q)w(q) = -W(q)A(q)* (2.6) 
It follows from the above equations that the atomic displacements U, = U@), at 

distance R = Rs - L,, from a single defect located in the s f  cell (c(q) = 
N-' exp( -iq - L , , ) ) ,  are defined as an integral over the Brillouin zone 

Q O  

8n3 jBz u(R) -- - A ( q )  sin(q ' R )  d q  

where Qo is the atomic volume. If there are two point defects in cells s and S I  at distance 
R = L, - L,,, then their elastic interaction energy is 

The formulae (2.7) and (2.8) define u(R) and %(R)  at any distances R .  It is usually 
assumed that at R S a the behaviour of these integrals is determined by the region of 
small q ,  whereA(q) and %(q) are given by the formulae of the continuum elastic theory: 
A(q) - a(n)q-' and %(q) - b(n) when q + 0 (n = q/q)  [2]. However, it is known from 
the Fourier transformation theory that the asymptotes of integrals of type (2.7) and (2.8) 
are determined not only by the behaviour of the functions A(q)  and %(q) at q --$ 0 but 
also by their singularities at finite q. 
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These singularities in metals exist at q = 2kF - Go due to the electron contributions 
toA(q) and%(q), To find explicit expressionsfor them, one should consider the electronic 
energy of the distorted solid solutions, which is additively included in the total free 
energy (2.3). 

3. Electronic energy of the distorted solid solution 

In the superpositional approach the potential energy of an electron in a metal containing 
point defects, when the relaxation of the host lattice is taken into account but the defect 
positions are unchanged, has the form 

U ( r )  = uh(r - Rs - U,) c ,ud( r  - Rs - h )  (3.1) 
S 

where u h  and u d  are the interaction energies between the electron and host atom or 
defect, respectively. For a substitutional impurity, h = 0 and u d  = uimp - oh, where uimp 
is the potential energy in the field of an impurity. In particular, for vacancies, u d  = - O h .  

In the case of interstitial atoms, h # 0 and u d  = uimp (for self-interstitial atom, u d  = u h ) .  

We chose the potential energy in the ideal ‘average’ crystal as a zero-order approxi- 
mation 

u,-,(T) = 6(1 - R , )  6(r) = uh(r) + C u d ( r - h )  (3.2) 
S 

and write Ep and Ip) for the electron spectrum and Bloch wavefunction in the extended 
zone for the potential uo(r).  The potential energy 

Au(r) = u(r) - uo(r) = Au(k)  exp(ik. r )  
k 

(3.3) 

will be considered as the disturbance. Within the accuracy of quadratic terms in dis- 
placements 

Au(k) = -uh(k)(k,ut(q) - t k i k ,  2 u,(q’)u,(q - 4 ’ ) )  -k exp(iq h ) c ( q ) u d ( k > *  (3.4) 
4’ 

Here k = q + G and 

The calculation of the electronic energy change A E  due to the disturbance Au(r) will 
be performed within the scope of perturbation theory, taking into account the first- and 
second-order terms. 

For the disturbance (3.3) we have 

Here po(G) is the Fourier transform of the undisturbed electron density and X G G ‘ ( q )  is 
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the density response function of the ‘average’ crystal. Following the definition of x(q)  
and considering the shift of the ‘average’ crystal (3.2) on the whole one can find the 
relation [ 171 

Gipo(G) = E XGG’(O)GI fi(G’)* (3.7) 
G’ 

At small defect concentration C(G) = uh(G) + cud(G) = uh(G), and x(q )  can be regarded 
as the density response function of pure metal, not of the ‘average’ crystal. Then from 
the expressions (3.6), (3.7) and (3.4), taking into account the equation u(G) = c(G) = 
0, we obtain (up to quadratic terms in c(q) and u(q) )  

N 
A E  = UE(q)lc(q)12 - N E  [W:(q)c(q) - h V ~ ( ~ l ) ~ j ( q ) l ~ r * ( q ) .  (3.8) 

q 9 

Here 

UE(q) = Q O  E ud(-q - G)ud(q + G r ) X G G ‘ ( ( I )  (3.9) 
G.G’ 

and 

VE(q) = W ( q )  - W ( 0 )  
(3.11) 

Comparison of expressions (3.8) and (2.3) shows that the first term in (3.8) 
determines the electronic energy of the system without deformations and should be 
included in Foe It describes the pairwise indirect interaction between impurities via the 
conduction electrons. The values WE(q) and VE(q) are the electron contributions to the 
total W ( q )  and V(q). We note that the expression for the electron component of dynamic 
matrix VE(q) coincides with previous results [15-171. 

The density response function is connected with the inverse dielectric screening 
matrix e&(q) and polarisation matrix ncc,(q) by the relations [17, 181 

v F ( q )  = Q O  E (4 + G)i(q + Gr)jUh(-q - G)’h(q + Gr)XGG‘(q). 
G.G‘ 

(3.12) 

and matrix m(q) in self-consistent field approximation (or random-phase approximation) 
has the form 

X G G ’ ( Q )  = [Qouc(q + G)l-l[&G&(q) - &G’l  

E G G ’ ( q )  = 8GG’  + uc (q  + G)nGG‘(q) uc(k)  = 4ne2/Qok2 

where n(E,) is the Fermi function and k = q + G. 

4. Separation of singularities in electronic energy 

(3.13) 

The polarisation matrix m(q) has singularities at q = qF, for which (IF + GO = 2kF. The 
set of the vectors q F  forms some surfaces in the Brillouin zone. The matrix x(q )  and 
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connected with it values WE(q) and VE(q) have singularities on these surfaces. Cor- 
responding surfaces in extended reciprocal space are formed by the set of vectors k = 
2kF. In the vicinity of these surfaces, only one term in G from (3.13) with G = Go makes 
a contribution to the singular part of the polarisation matrix, which can be written as 

anGC’ (4) = 6 P ( k ) y G G ‘  (2kF) k = q + G o  (4.1) 
where 6P(k)  is the singular part of the function 

YGG‘(2kF) is the averaged value of yGc,(p,2kF - Go, 2kF) over p ,  for which Ep = 
Ep + Ep+ZkF = E F ,  and the vector 2kF close to k is chosen parallel to k for the sake of 
definiteness. Thus, 2kF and y(2kF) are functions of the direction of k but not its magni- 
tude. 

For isotropic band structure when Ip) are plane waves 

YCC’ (2kF = 8GGo G’Go (4.3) 

Supposing that the singular part of the dielectric matrix 6~ (but not its derivative) is 
much less than the value E at q = q F ,  one can write 8e-l = - E - ~ ~ E E - ’  and find the 
singular part of the density response function from (3.12) and (4.1) as 

and screened potentials are determined as 

uSC(q + G )  = x E & c ( q ) U ( q  + G ’ ) .  (4.7) 
G‘ 

Finally, substituting (4.5) into (2.4) and (2.6) and taking into account that at small 
6V the value 6V-’ = -V-’GVV-’, we obtain singular parts ofA(q) and %(q) due to the 
electron contributions to W ( q )  and V(q) 

6A(q) = -6P(k)D(2k~)  6%(q) = 6P(k)B(2kF) 
(4.8) D = V-’(C - TA) B = 2CA - ATA 

where all coefficients are taken at q = qF = 2kF - Go. 
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As follows from these expressions the singularities of A ( q )  and %(q) arise from two 
causes: due to the conduction electron screening of the impurity-host interaction, 
which determines the singularities of W ( q ) ;  and due to the screening of the host- 
host interaction, which determines the singularities of V(q). Accordingly, they are 
responsible for the first and the second terms in the expressions for D and B Let us 
estimate the relative value of these terms. At small q ,  as follows from continuum elastic 
theory, A(q) - a/q, where a is the bulk coefficient of concentration lattice expansion 
[2]. Extrapolating this dependence up to q - qF we obtain 

If ur(2kF) - u2(2kF), then for interstitial atoms or vacancies when a - 1 both terms 
are of the same order. For substitutional defects, where a - 0.01-0.1, one can neglect 
the second terms in (4.8) and take into account only the singularities of W ( q ) .  

5. Quantum components of the elastic interaction and of atomic displacements 

The quantum components (ac) of the atomic displacements around the point defect 
uE(R) and elastic defect interaction energy s E ( R )  at distances R + a are determined by 
the singularities of A(q)  and %(q) at q = qF. To find them one should integrate (2.7) and 
(2.8) over the neighbourhood of the surface q = qF, retaining in A ( q )  and 8(q) only 
singular parts of these values. It is convenient to find an integral in extended k-space. The 
integrands in (2.7) and (2.8) do not change on the replacement q-+ q + G .  Therefore, 
instead of integrating over the regions q = qF one can integrate with respect to k = q + Go 
over the neighbourhood of the surface k = 2kF. Here vector Go is different for various 
regions of q and it is chosen such that qF + Go = 2kF. Hence 

dkD(2k~)6P(k)  Sh(k * R )  

d k  B(2k,)6P(k)  COS(^ * R) 

where the prime means integration over k = 2kF. 

5.1. Spherical Fermi surface 

For spherical FS with radius pF the surface k = 2kF is a sphere with radius 2pF. For k --. 
2kF the singular part is 

where m is the effective mass and v 3  = v3(EF) is the electron density of states per atom. 
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Substituting this expression into (5.1), integrating it over angles and then after twofold 
integration by parts over k at R * n / p F  we obtain 

Hence, u(R) and %(R)  for the spherical FS contain QC, oscillating with period n / p F  
and decreasing as R - 3 .  The direction of the displacements is determined by the vector 
D(2k:),  which depends on the direction R .  Generally, D(2kF) is not parallel to R .  But 
for high-symmetry directions (like [100], [110] and [ l  1 11 in cubic crystals) one can 
prove that D 11 R ,  and static displacements uE(R) are longitudinal. In the nearly-free- 
electron approach, according to (4 .3 )  and (4 .6 ) ,  C(2kg) 1 1  R ,  TLj(2k:) R ,R ,  and 
D(2kF) is parallel to the vector V ; ' ( q g ) R , ,  where q! = 2kE - G o .  

5.2. Cylindrical Fermi surface 

Let the FS section be a circular cylinder with the height p o  and radius pF. In this case 
2kF = kll+ 2&kl/kl, where kl, and k ,  are components of vector k along and normal to 
the cylinder axis, and kll < p 0 / 2 .  If kii p o ,  supposing that the electron spectrum near 
the FS is two-dimensional (Ep = p\/2m) one can find from (4 .2 )  (see also [19]) that 

mPuQu 
2n2 

v2 =- Re(k, - 2 p ~ ) ' "  6P(k )  = -- v2 
P Y 2  (5 .4 )  

where v 2  = vZ(EF) is the contribution of FS sections to the electron density of states per 
atom. At k ,  = 2pF the function 6 P ( k )  has root singularity. 

Let R = Rll + R, .  As the integrand in (5.1) has no singularities in kl,, then uE(R)  and 
gE(R)  will be exponentially decreasing functions of RI( (at distances of the order of the 
interatomic separation). Therefore, only the case RI, = 0 is considered. At R ,  %- n / p F  in 
(5.1) one can first integrate over the angle in the plane k, ,  then by parts over k , .  As a 
result we obtain 

where fi(2pF) and B(2p:) are the average values of D(2p: + k , , )  and B(2& + kll) over 
kll in the region kii < p o / 2 .  It follows from these expressions that QC in the case of a 
cylindrical FS section along the normal to the cylinder axis are oscillating functions with 
amplitude decreasing as R y2.  For high-symmetry directions uE(Rl) 11 R , .  

5.3.  Flat Fermi surface sections 

We now consider FS that has flat sections of area S ,  separated by 2pF. Then 2kF = 
k ,  + 2pFkli/kli, where k ,  and kll are the components of k in the plane of FS and in the 
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normal direction. If k ,  is not close to the boundaries of the FS sections, supposing quasi- 
one-dimensionality of the electron spectrum (Ep  = p$/2m) near FS, one can find from 
(4.2) (see also [4, 191) that 

where v1 = vl(EF) is the contribution of the FS sections under consideration to the 
electron density of states per atom. 

will be expo- 
nentially decreasing (at distances -a) functions of R ,  (the component of R in the plane 
k J .  The dependence of QC onRIl at RI1 % n/pF and R ,  = 0 can be obtained from equation 
(5.1) after integration by parts over kll, 

Since 6P(k)  does not contain singularities in k, ,  QC uE(R) and 

Here fi(2pF) and B(2pF) are obtained by averaging of the functions D(2p: + k,) and 
B(2pF + k,) over k ,  in the area S , .  It follows from (5.7) that along the normals to the 
flat FS sections uE(R1l) and CeE(R1l) decrease as R i l  and oscillate with period n/pF. If kil is 
a high-symmetry direction, then displacements are longitudinal (uE(R1l) 1 1  R ~ I ) .  

For the flat FS sections SP(k) at kll= 2pF, and hence E ( q )  in (3.12) at q = qF, has 
logarithmic divergence. To make sense of the inverse dielectric matrix one 
should eliminate this divergence. It can be done through taking into account the non- 
zero temperature Tor the damping r of the electron states due to the phonon scattering. 
Then in a small region I kll - 2pF 1 6 ko where ko - pFT/EF, PFr/EF, the expressions (5.6) 
for 6 P ( k )  will change and the presented asymptotes of QC will be correct for not too 
large distances n p f l  4 RI\ 4 k;' .  

6. Total atomic displacements and point-defect interaction energy 

Total atomic displacements at large distances R % a - n/pF from a point defect are the 
sum of the above-discussed QC and a continuum component (cc) 

u(R) = U y R )  + uCO"'(R). (6.1) 

The order of magnitude of the latter is (see e.g. [2]) 

where a is determined in (4.9). 
To estimate QC, we assume that for all considered FS& = n / a  (a  is the lattice spacing), 

and take into account that Vij(qF) - Aa,  where A is the elastic modulus of the host lattice. 
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Then using equations (5.3), (5 .5)  and (5.7) for uE(R)  and (4.8) and (4.6) forD, one can 
estimate QC accordingly for spherical, cylindrical and flat FS sections as 

g = USd(2kF)USIC(2kF)I/Aah2. 

In the expression for non-dimensional parameter g, Planck's constant is included 
although in the rest of this paper we assume h = 1. The typical value of g - 0.014.1 is 
obtained. The comparison of (6.2) and (6.3) shows that at R % a for spherical FS, uE -e 
ucont as a rule. But for cylindrical and flat FS, especially at small (Y and large po and S,, 
QC is comparable in magnitude with cc and even exceeds it. In the region R - a where 
the asymptotic expressions give only the order of magnitude of displacements, in solid 
solutions with small (Y - g cc and QC are comparable in magnitude for all FS discussed 
(Whenpo-pFand S ,  - p ; ) .  

At large distances R % a the total interaction energy of point defects in metals U,,, is 
the sum of the indirect interaction energy UE(R) and the elastic interaction %(R)  con- 
taining cc and QC 

U,,, ( R )  = UE ( R )  + % E(R) + % ( R ) .  (6 14) 

%'Ont(R) - Aa2Q;2/4nR3. (6.5) 

In an elastic anisotropic crystal (see e.g. [2]) the order of magnitude is 

The indirect interaction UE(R) is determined by the singularities of UE(q)  in the 
expressions (3.8) and (3.9) at q = qF. (In the case of charged defects UE(q)  also has 
singularities at q + 0, which exactly cancel out with those of the direct Coulomb inter- 
action of defects.) According to (3.8) and (4.5) the energy UE(R)  is given by 

(6.6) UE(R) = -0 ' i' dk  6P(k)S(2k~) COS(k.R) 
8n3 

i.e. is determined by an integral similar to that for sE(R)  in (5.1). Therefore UE(R) for 
any FS has the same form as with the constant -S(2kF) instead of B(2kF). Relative 
values are 

s E / U E  - B(2kF)/S(2kF) - (Y(Ur(2kF)/U?(2kF)) (6 * 7) 

and for U ?  - U 

action. 

may be estimated as 

and a - 1, QC ZE(R) is comparable in magnitude with indirect inter- 

Using the example described above, the QC for the spherical, cylindrical and flat FS 

Comparison of the expressions (6.8) and (6.5) shows that at a - g QC is of the same 
order as cc (for spherical FS) or exceeds it (when po - pF, S ,  - p$). At a - 1 (for 
interstitial atoms and vacancies) in the case of cylindrical and flat FS at large enough 
distances exceeds Vont(R) because QC falls with R more slowly than does cc. 
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7. Discussion 

The interatomic interactions in metals are screened by the conduction electrons. For 
this reason, the forces W(s, s ')  acting on the host atom from the point defect and force 
constants V(s, s ' )  have Friedel oscillations (1.1). In this work it is shown that these long- 
range forces cause similar oscillations in the atomic displacement fields around the defect 
and in the elastic interaction of defects. The QC of the displacements found above are 
very similar in form and nature to the well known Friedel oscillations of electron density 
around a point defect or to RKKY oscillations of spin density around a magnetic impurity 
in a paramagnet [20,21]. 

The magnitude of the QC of displacements can be comparable to or even exceed 
(especially in metals with cylindrical or flattened FS sections and small (U) the cc. In these 
cases, if u(R) is to be calculated, one cannot be confined to interactions in a few 
coordination spheres and should take into account long-range components of W(s, s') 
and V(s, s'). 

The oscillating character of the QC of displacements should manifest itself in the 
diffuse scattering of x-rays and neutrons in metallic solid solutions. When the diffraction 
vector Q = qF + G ,  the scattering by the QC of displacements of a great number of atoms 
will all be in phase. Hence, anomalies in the intensity of the diffuse scattering should be 
observed at Q = qF + G .  Their positions will be in exact coincidence with Migdal-Kohn 
anomaly positions in the phonon spectrum of the host metal. 

Perhaps, the sharp maximum of the diffuse neutron scattering observed in Nb with 
small concentrations of Zr,  N or 0 impurities [22-241 can be explained in this way. The 
position of this maximum just coincides with the local minimum in the phonon spectrum 
of Nb [25]. 

The existence of anomalies at Q = q F  + G presents the opportunity to obtain infor- 
mation about FS of metals by diffuse x-ray and neutron scattering data. A detailed 
analysis of the diffuse scattering anomalies will be carried out in a separate paper. 

The QC gE(R) can also make an essential contribution to the elastic energy of the 
defect interaction. It is particularly important in metals with low elastic anisotropy (for 
instance, tungsten) because %co"t(R) = 0 in an elastically isotropic crystal for defects of 
cubic symmetry. Then at large R in equation (2.8) the region of small q will make a 
contribution to %(R)  CC R - 5 ,  connected with quadrupole moments [26] and decreasing 
much more abruptly than EE(R). 

It is noteworthy that the thermodynamic characteristics of a solid solution depend 
only upon the total defect interaction U,,, (equation (6.4)). It includes the indirect 
interaction UE(R) ,  which is usually comparable with EE(R) and has the same oscillating 
character. Hence, experimental proof of the existence of QC gE(R) in U,,, may turn out 
to be rather difficult. 

In this paper only point defects were considered. Similar reasoning must imply 
quantum oscillations in the atomic displacement fields around other defects in metals 
(e.g. dislocations, new phase particles, defect clusters). The elastic interaction between 
them should also contain the oscillating component. 

As was shown in [27,28], the indirect interaction of new phase particles in metals, 
due to the interference of interactions between different atoms, has oscillating character 
and depends drastically on the size, shape and orientation of the particles and distances 
between them. One can expect that the elastic interaction between particles in metals 
will have similar peculiarities due to the QC. Additional research is needed to clarify this 
question. 
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In conclusion let us consider one important limitation of the model, namely the 
validity of second-order perturbation theory for electronic energy calculation. The first 
two terms in the disturbed potential (3.4) contain atomic displacements. In higher 
orders of perturbation theory they would lead to anharmonic terms in the free energy. 
Consideration of the latter goes beyond the scope of this work. The third term in (3.4) 
can be assumed small if ud(2kF) 4 EF. Otherwise, higher orders of perturbation theory 
in u d  will give rise to many-body forces in the electron part of W(s, s') (i.e. W(s, s') will 
depend on occupation numbers c,). At small concentration of defects they can be 
neglected. Besides, terms of third and higher orders in perturbation theory renormalise 
pairwise forces W(s, s'), i.e. the expression (3.10) for WE(q) will be changed. 

However, most likely, the character of the oscillations of W(s, s ' )  and consequently 
of QC uE(R)  and gE(R)  will remain qualitatively unchanged (except for the special case 
when the potential ud(r) forms a localised energy level close to EF). This can be concluded 
by analogy with the Friedel oscillations around a point defect, where exact results 
obtained from scattering theory coincide qualitatively with the expressions of per- 
turbation theory [20]. It is also possible to point out the analogy with the indirect 
interaction of impurities, which has oscillations like (1.1) for exactly solvable models 
[29] as well as in second-order perturbation theory. 
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